

tel.: (+48 22) 825-04-71 (+48 22) 825-76-55 fax: (+48 22) 825-52-86

www.itb.pl

European Technical Assessment

ETA-10/0102 of 15/05/2014

General Part

Technical Assessment Body issuing the European Technical Assessment

Instytut Techniki Budowlanej

Trade name of the construction product

DGE02 Sinto ST-VE, DGE12 Sinto ST-VEW and DGE22 Sinto ST-VES

Product family to which the construction product belongs

Bonded anchor with anchor rod made of galvanized steel or stainless steel for use in concrete

Manufacturer

Tecfi S.p.A. 81050 Pastorano (CE) – S.S. Appia km 193 Italy

Manufacturing plant(s)

Tecfi Manufacturing Plant 1

This European Technical Assessment contains

22 pages including 3 Annexes which form an integral part of this Assessment

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Guideline for European Technical Approval ETAG 001, Edition April 2013 "Metal anchors for use in concrete – Part 1: Anchors in general and Part 5: Bonded anchors", used as European Assessment Document (EAD)

This version replaces

ETA-10/0102 issued on 22/03/2010

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

Specific Part

1 Technical description of the product

The DGE02 Sinto ST-VE, DGE12 Sinto ST-VEW and DGE22 Sinto ST-VES are a bonded anchors (injection type) consisting of a injection mortar cartridge using an applicator gun equipped with a special mixing nozzle and threaded anchor rod of the sizes M8 to M24 made of:

- galvanized carbon steel,
- stainless steel.
- high corrosion resistant stainless steel,

with hexagon nut and washer.

The threaded rod is placed into a drilled hole previously injected (using an applicator gun) with a mortar with a slow and slight twisting motion. The threaded rod is anchored by the bond between rod, mortar and concrete.

The threaded rods are available for all diameters with three type of tip end: a one side 45° chamfer, a two sides 45° chamfer or a flat. The threaded rods are either delivered with the mortar cartridges or commercial standard threaded rods purchased separately. The mortar cartridges are available in different sizes and types.

An illustration and the description of the products are given in Annex A1 to A4.

2 Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchors are used in compliance with the specifications and conditions given in Annex B1 to B10.

The performances given in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer or the Technical Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Performance of the product

3.1.1 Mechanical resistance and stability (BWR 1)

The essential characteristic is detailed in the Annex C1 to C4.

3.1.2 Safety in case of fire (BWR 2)

No performance determined.

3.1.3 Hygiene, health and the environment (BWR 3)

Regarding the dangerous substances clauses contained in this European Technical Assessment, there may be requirements applicable to the products falling within its

scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Regulation, these requirements need also to be complied with, when and where they apply.

3.1.4 Safety in use (BWR 4)

For Basic Requirement Safety in use the same criteria are valid as for Basic Requirement Mechanical resistance and stability (BWR 1).

3.1.5 Sustainable use of natural resources (BWR 7)

No performance determined.

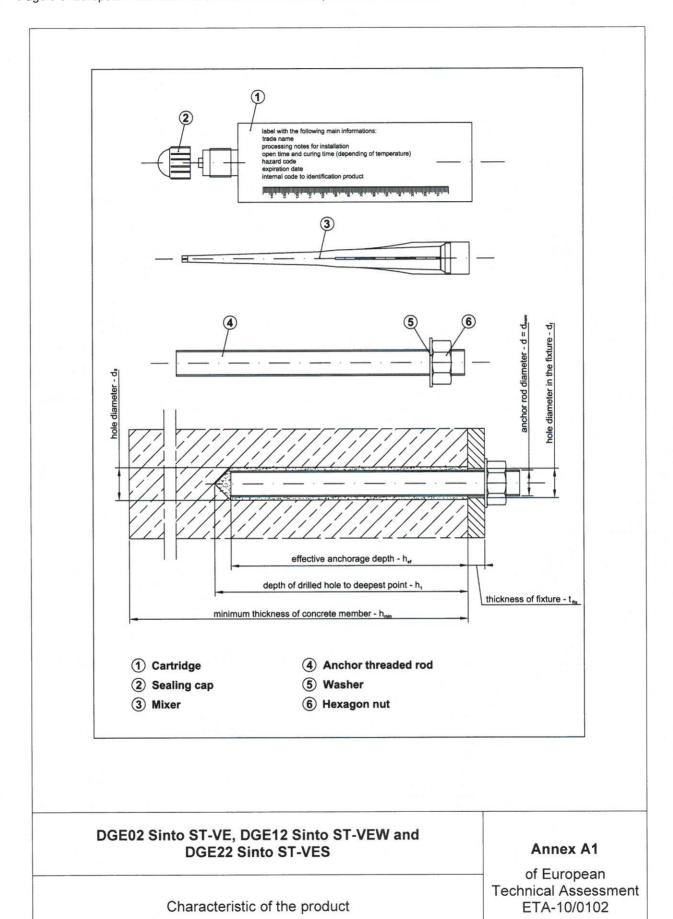
3.2 Methods used for the assessment

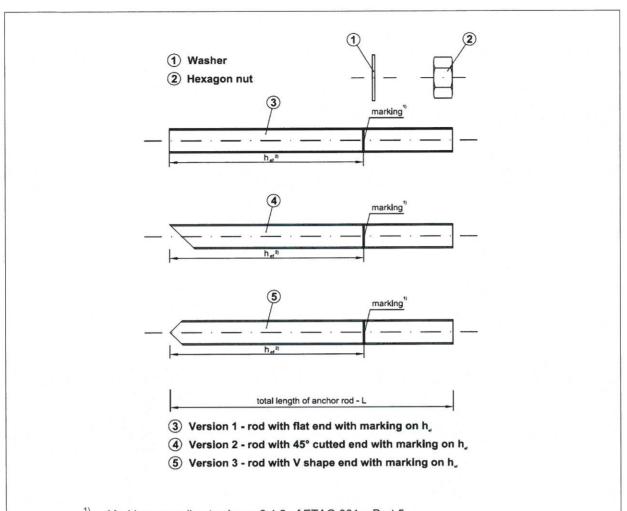
The assessment of fitness of the anchors for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 has been made in accordance with the ETAG 001 "Metal anchors for use in concrete", Part 1: "Anchors in general" and Part 5: "Bonded anchors", on the basis of Option 1 and 7.

4 Assessment and verification of constancy of performance (hereinafter AVCP) system applied, with reference to its legal base

According to Decision 96/582/EC of the European Commission the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete	For fixing and/or supporting to concrete structural elements (which contributes to the stability of the works) or heavy units	-	1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Instytut Techniki Budowlanej.

For type testing the results of the tests performed as part of the assessment for the European Technical Assessment shall be used unless there are changes in the production line or plant. In such cases the necessary type testing has to be agreed between Instytut Techniki Budowlanej and the notified body.

Issued in Warsaw on 15/05/2014 by Instytut Techniki Budowlanej

Jan Bobrowicz Director of ITB

Marking according to clause 2.1.2 of ETAG 001 – Part 5
Effective anchorage depth according to Table A1

Table A1: Anchor threaded rod dimensions

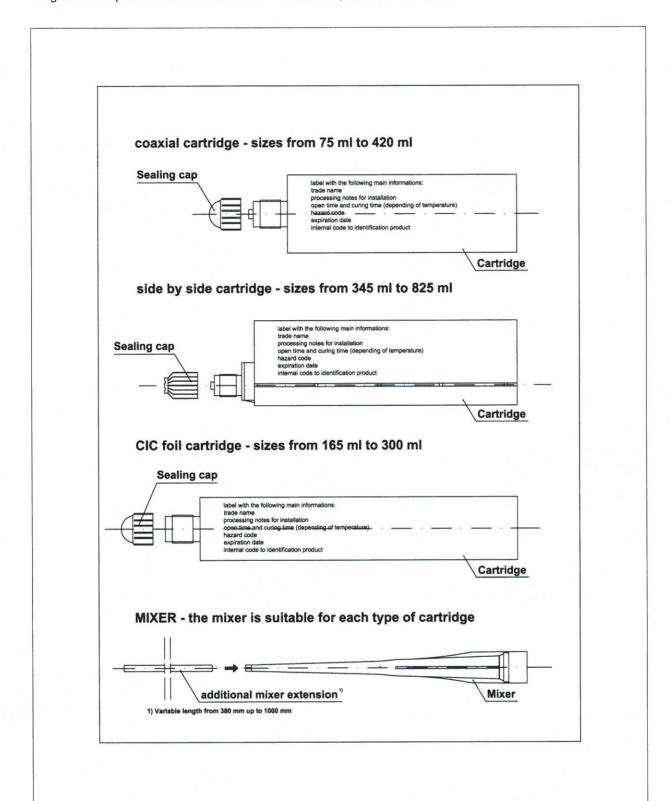
Size	d [mm]	h _{ef,min} [mm]	h _{ef,max} [mm]
M8	8	60	160
M10	10	70	200
M12	12	80	240
M16	16	100	320
M20	20	120	400
M24	24	145	480

DGE02 Sinto ST-VE, DGE12 Sinto ST-VEW and DGE22 Sinto ST-VES Annex A2 of European Technical Assessment ETA-10/0102

Table A2: Threaded rods

Part	Designation					
	Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042	Stainless steel	High corrosion resistance stainless steel (HCR)			
Threaded rod	Steel, property class 4.8 to 12.9, acc. to EN ISO 898-1	4.8 to 12.9, acc. to				
Hexagon nut	Steel, property class 4 to 12, acc. to EN 20898-2; corresponding to anchor rod material	Material 1.4401, 1.4571 acc. to EN 10088; property class 70 and 80 (A4-70 and A4-80) acc. to EN ISO 3506	Material 1.4529, 1.4565, 1.4547 acc. to EN 10088; property class 70 acc. to EN ISO 3506			
Washer	Steel, acc. to EN ISO 7089; corresponding to anchor rod material	Material 1.4401, 1.4571 acc. to EN 10088; corresponding to anchor rod material	Material 1.4529, 1.4565, 1.4547 acc. to EN 10088; corresponding to anchor rod material			

Commercial standard threaded rods (in the case of rods made of galvanized steel – standard rods with property class \leq 8.8 only), with:


- material and mechanical properties according to Table A2,
- confirmation of material and mechanical properties by inspection certificate 3.1 according to EN-10204:2004; the documents shall be stored,
- marking of the threaded rod with the embedment depth.

Note: Commercial standard threaded rods made of galvanized steel with property class above 8.8 are not permitted in some Member States.

Table A3: Injection mortars

Product	Composition
DGE02 SINTO ST-VE DGE12 SINTO ST-VEW DGE22 SINTO ST-VES (two component injection mortars)	Additive: quartz Bonding agent: vinyl ester resin styrene free Hardener: dibenzoyl peroxide

DGE02 Sinto ST-VE, DGE12 Sinto ST-VEW and DGE22 Sinto ST-VES	Annex A3
Materials	of European Technical Assessment ETA-10/0102

Cartridge types and sizes

Annex A4

SPECIFICATION OF INTENDED USE

Use:

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 of Regulation (EU) 305/2011 shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

Anchors subject to:

Static and quasi-static loads: sizes from M8 to M24.

Base material:

- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum to C50/60 at maximum according to EN 206-1.
- Non cracked concrete: sizes from M8 to M24.
- Cracked concrete: sizes from M10 to M20.

Temperature range:

The anchors may be used in the following temperature range:

- -40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C).
- -40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C).
- -40°C to +120°C (max. short term temperature +120°C and max. long term temperature +72°C).

Use conditions (environmental conditions):

- Elements made of galvanized steel may be used in structures subject to dry internal conditions.
- Elements made of stainless steel may be used in structures subject to dry internal conditions and also in concrete subject to external atmospheric exposure (including industrial and marine environment) or exposure in permanently damp internal conditions if no particular aggressive conditions exist. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).
- Elements made of high corrosion resistant steel may be used in structures subject to dry internal conditions and also in concrete subject to external atmospheric exposure or exposure in permanently damp internal conditions or in other particular aggressive conditions. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Installation:

- Dry or wet concrete (use category 1): sizes from M8 to M24.
- Flooded holes with the exception of seawater (use category 2): sizes from M8 to M24.
- All the diameters may be used overhead: sizes from M8 to M24.
- The anchors are suitable for hammer drilled holes: sizes from M8 to M24.

Design methods:

EOTA Technical Report TR029 (September 2010) or CEN/TS 1992-4.

DGE02 Sinto ST-VE, DGE12 Sinto ST-VEW and DGE22 Sinto ST-VES	Annex B1
Intended use	of European Technical Assessment ETA-10/0102

Table B1: Installation data

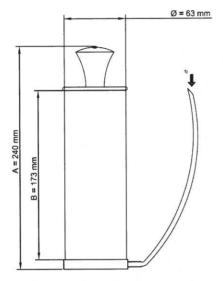
Size	M8 M10		M12	M16	M20	M24	
Nominal drilling diameter	d ₀ [mm]	10	10 12 14			24	28
Maximum diameter hole in the fixture	d _{fix} [mm]	9	12	14	18	22	26
Effective	h _{ef,min} [mm]	60	70	80	100	120	145
embedment depth	h _{ef,max} [mm]	160	200	240	320	400	480
Depth of the drilling hole	h ₁ [mm]	h _{ef} + 5 mm					
Minimum thickness of the concrete slab	h _{min} [mm]	h _{ef} + 30 mm; ≥ 100 mm h _{ef} + 2					
Torque moment	T _{inst} [N·m]	10	10 20 40		80	130	200
Thickness to be	t _{fix,min} [mm]	> 0					
fixed	t _{fix,max} [mm]	< 1500					
Minimum spacing	s _{min} [mm]	40	40	40	50	60	80
Minimum edge distance	c _{min} [mm]	40	40	40	50	60	80

Installation data

Annex B2

Table B2: Processing time and minimum curing time

DGE02 Sinto ST-VE (standard version)					
Concrete temperature [C°]	Processing time [min.]	Minimum curing time ¹⁾ [min.]			
-10	105	1320			
-5	65	780			
0	45	420			
+5	25	90			
+10	16	60			
+15	11,5	45			
+20	7,5	40			
+25	5	35			
+30	3	30			
+35	2	25			
+40	1	20			


DGE12 Sinto ST-VEW (version for winter season)						
Concrete temperature [C°] Processing time [min.] Minimum curing time ¹⁾ [n						
-20	120	1440				
-15	90	1000				
-10	60	600				
-5	40	210				
0	25	100				
+5	15	70				
+10	10	50				
+15	7	35				
+20	5	30				

DGE22 Sinto ST-VES (version for summer season)					
Concrete temperature [C°] Processing time [min.] Minimum curing time					
+20	14	60			
+25	11	50			
+30	8	40			
+35	6	30			
+40	4	20			
+45	3	20			
+50	2	20			

The minimum time from the end of the mixing to the time when the anchor may be torque or loaded (whichever is longer). Minimum resin temperature for installation +5°C; maximum resin temperature for installation +30°C. For wet condition and flooded holes the curing time must be double.

DGE02 Sinto ST-VE, DGE12 Sinto ST-VEW and DGE22 Sinto ST-VES	Annex B3
Processing time and curing time	of European Technical Assessment ETA-10/0102

Manual Blower pump: nominal dimensions

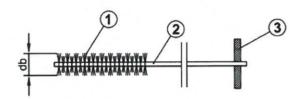
It is possible to use the mixer extensior with the manual blower pump.

However it is possible to blow the hole using the mechanical air system (compressed air) also with the mixer estension

Suitable min pressure 6 bar at 6 m³/h Oil-free compressed air Recommended air gun with an orifice opening of minimum 3.5 mm in diameter

1) Position to insert the mixer extension

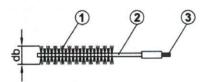
Mixer extension (from 380 mm to 1000 mm) with nominal diameter 8 mm


DGE02 Sinto ST-VE, DGE12 Sinto ST-VEW and DGE22 Sinto ST-VES

Cleaning tools (1)

Annex B4

Table B3: Standard brush diameter


Threaded rod diameter		M8	M10	M12	M16	M20	M24	
d ₀	Nominal drill hole	[mm]	10	12	14	18	24	28
d _b	Brush diameter	[mm]	12	14	16	20	26	30

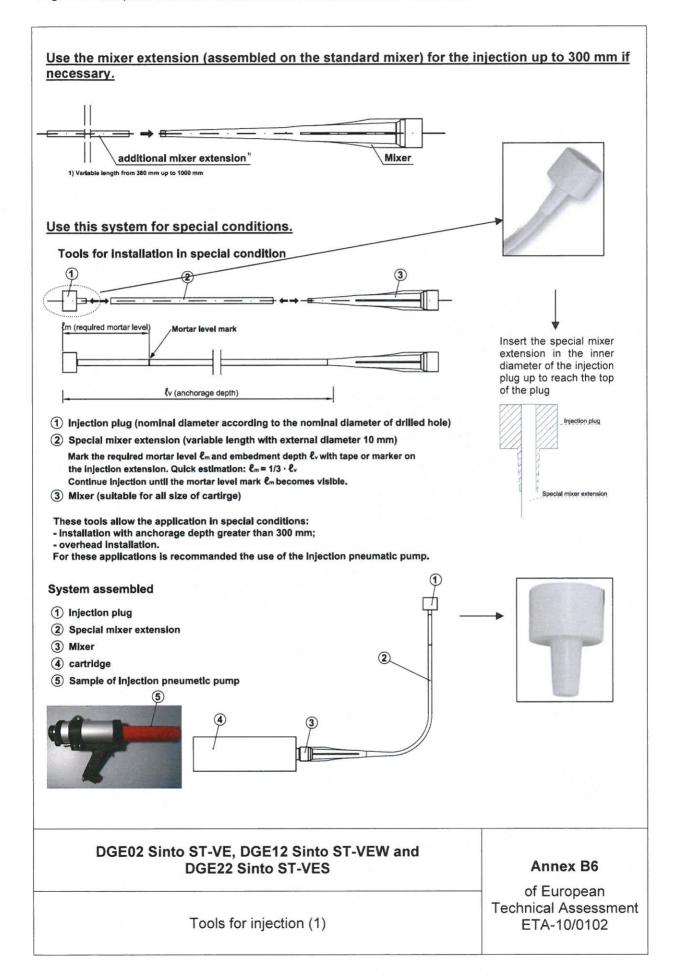
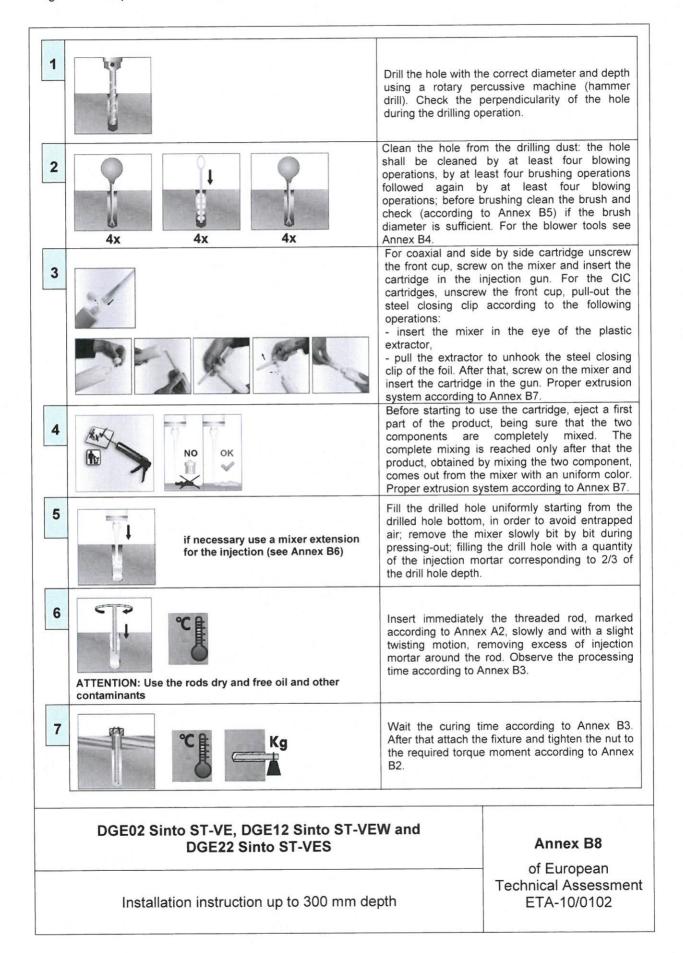
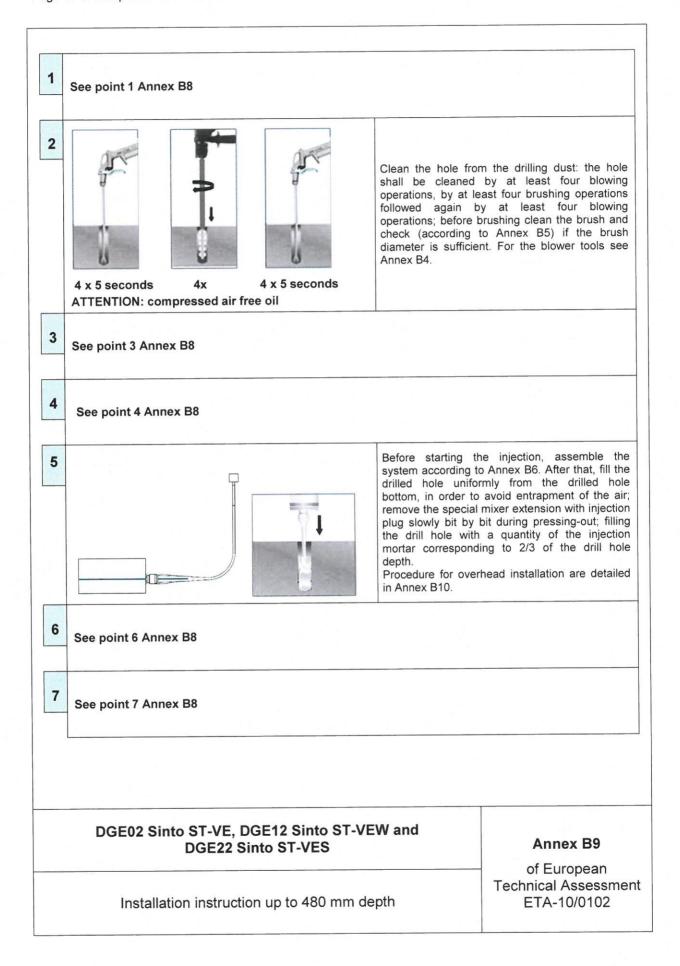
- 1 Steel bristles
- 2 Steel stem
- 3 Wood handle

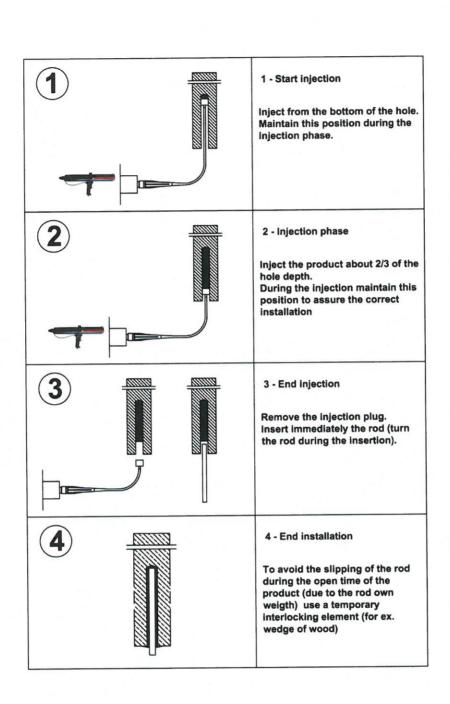
Table B4: Special brush diameter (mechanical brush)

Th	Threaded rod diameter		M16	M20	M24
d ₀	Nominal drill hole	[mm]	18	24	28
d _b	Brush diameter	[mm]	20	26	30

- 1 Steel bristles
- 2 Steel stem
- 3 Threaded connection for drilling tool extension
- 4 Extension special brush
- (5) Drilling tool connection (SDS connection)

DGE02 Sinto ST-VE, DGE12 Sinto ST-VEW and DGE22 Sinto ST-VES	Annex B5
Cleaning tools (2)	of European Technical Assessment ETA-10/0102


Table B5: Mortar injection pumps

Pumps (injection guns)	Cartridges	Types
	300 ml 165 ml	Manual (up to 300 mm anchorage depth)
	345 ml 300 ml 165 ml	Manual (up to 300 mm anchorage depth)
	from 380 ml to 420 ml	Manual (up to 300 mm anchorage depth)
	from 380 ml to 420 ml	Pneumatic
	825 ml	Manual (up to 300 mm anchorage depth)
7	825 ml	Pneumatic

DGE02 Sinto ST-VE, DGE12 Sinto ST-VEW and DGE22 Sinto ST-VES	Annex B7
Tools for injection (2)	of European Technical Assessmen ETA-10/0102

Overhead installation instruction

Annex B10

	Table C1: Characteristic values for tension load in	non cra	cked co	oncrete	
ı					Ī

Size			M8	M10	M12	M16	M20	M24
Steel failure								
Steel failure with threaded rod grade 4.8								
Characteristic resistance	$N_{Rk,s}$	[kN]	15	23	34	63	98	141
Partial safety factor	γMs	[-]			1,	50		
Steel failure with threaded rod grade 5.8								
Characteristic resistance	$N_{Rk,s}$	[kN]	18	29	42	78	122	176
Partial safety factor	γMs	[-]			1,	50		
Steel failure with threaded rod grade 8.8								
Characteristic resistance	$N_{Rk,s}$	[kN]	29	46	67	126	196	282
Partial safety factor	γMs	[-]			1,	50		
Steel failure with threaded rod grade 10.9							0.15	050
Characteristic resistance	$N_{Rk,s}$	[kN]	37	58	84	157	245	353
Partial safety factor	γMs	[-]			1,	40		
Steel failure with threaded rod grade 12.9								10.
Characteristic resistance	N _{Rk,s}	[kN]	44	70	101	188	294	424
Partial safety factor	γMs	[-]			1,	40		
Steel failure with stainless steel threaded	rod A4-70				,			
Characteristic resistance	$N_{Rk,s}$	[kN]	26	41	59	110	171	247
Partial safety factor	γмs	[-]			1,	87		
Steel failure with stainless steel threaded	rod A4-80			,				1
Characteristic resistance	$N_{Rk,s}$	[kN]	29	46	67	126	196	282
Partial safety factor	γMs	[-]			1,	60		
Steel failure with high corrosion resistant	steel grade 70							1
Characteristic resistance	$N_{Rk,s}$	[kN]	26	41	59	110	171	247
Partial safety factor	γMs	[-]			1	87		
Combined pull-out and concrete of	one failure in no	on cracked	concrete	C20/25		HIS HERE		
Characteristic bond resistance		[N/mm ²]	16,0	12,0	12,0	12.0	9,5	9,5
temperature range -40°C / +40°C 1)	T _{Rk,ucr}	[IN/IIIII]	10,0	12,0	12,0	12,0	3,3	0,0
Characteristic bond resistance		[N/mm ²]	11,0	8,5	8,5	8,5	7,0	7,0
temperature range -40°C / +80°C 1)	T _{Rk,ucr}	[IN/IIIII]	11,0	0,5	0,0	0,0	,,,	,,,
Characteristic bond resistance	7	[N/mm ²]	6,0	4,5	4,5	4,5	4.0	4,0
temperature range -40°C / +120°C 1)	TRk,ucr	[14/11/11]	0,0	1,0		3.5%	.,,-	
Increasing factor for C30/37						,12		
Increasing factor for C40/50	Ψc	[-]				,23		
Increasing factor for C50/60					1	,30		
Splitting failure								
						= h _{min}		All -
			2,5	· h _{ef}	2,0	· h _{ef}	1,5	· h _{ef}
					If h _{min} <	n < 2 · h _{min}		
			2,5 - 172		1	1	*****	
	0	[mama]			2 x h _{min}			
Edge distance	$C_{cr,Nsp}$	[mm]			min			
					h _{min}	C _{cr.Np} C _{cr.Nsp}		
					interpola	ate values		
						2 · h _{min}		
						cr.Np		
Specing	S _{cr,Nsp}	[mm]	112			C _{cr.sp}		
Spacing			l anlittin	n failura	_	- cr,sp		
Partial safety factor for combined	pull-out, concre	te cone and	spiitting	granure	THE PERSON NAMED IN			
Partial safety factors for in use					1	,50		
category 1 ($\gamma_2 = 1,0$ included)	$\gamma_{Mp} = \gamma_{Mc} = \gamma_{Msp}^{2}$	[-]				POL.		
Partial safety factors for in use	1 Mb - 1 Mc = 1 Msb	.,			1	,80		
category 2 (γ_2 = 1,2 included)	1							

Characteristic resistance under tension loads in non cracked concrete

Annex C1

Note: Design method according to TR 029

1) See: Annex B1

2) In the absence of other national regulation

Size			M10	M12	M16	M20	
Steel failure							
Steel failure with threaded rod grade 4.8							
Characteristic resistance	N _{Rk,s}	[kN]	23	34	63	98	
Partial safety factor	γMs	[-]		1	50		
Steel failure with threaded rod grade 5.8	7.000						
Characteristic resistance	N _{Rk,s}	[kN]	29	42	78	122	
Partial safety factor	γMs	[-]		1	50		
Steel failure with threaded rod grade 8.8	71110						
Characteristic resistance	N _{Rk,s}	[kN]	46	67	126	196	
Partial safety factor	γMs	[-]		1	,50		
Steel failure with threaded rod grade 10.9							
Characteristic resistance	N _{Rk,s}	[kN]	58	84	157	245	
Partial safety factor	γMs	[-]		1	,40		
Steel failure with threaded rod grade 12.9							
Characteristic resistance	$N_{Rk,s}$	[kN]	70	101	188	294	
Partial safety factor	γMs	[-]		1	,40		
Steel failure with stainless steel threaded	rod A4-70						
Characteristic resistance	N _{Rk,s}	[kN]	41	59	110	171	
Partial safety factor	γMs	[-]		1	,87		
Steel failure with stainless steel threaded	rod A4-80						
Characteristic resistance	$N_{Rk,s}$	[kN]	46	67	126	196	
Partial safety factor	γMs	[-]		1	,60		
Steel failure with high corrosion resistant	steel grade 70						
Characteristic resistance	$N_{Rk,s}$	[kN]	41	59	110	171	
Partial safety factor	γMs	[-]		1	,87		
Combined pull-out and concrete c	one failure in cr	acked concr	ete C20/25				
Characteristic bond resistance				0.0	0.0	6,5	
temperature range -40°C / +40°C 1)	T _{Rk,cr}	[N/mm ²]	9,0	9,0	9,0	0,5	
Characteristic bond resistance		[N/mm ²]	6,5	6,5	6,5	4,5	
temperature range -40°C / +80°C 1)	τ _{Rk,cr}	[IA/IIIII]	0,5	0,5	0,5	4,5	
Characteristic bond resistance	_	[N/mm ²]	3,5	3,5	3,5	2,5	
temperature range -40°C / +120°C 1)	T _{Rk,cr}	[18/11111]	3,3	100000		2,5	
Increasing factor for C30/37					,12		
Increasing factor for C40/50	Ψc	[-]			,23		
Increasing factor for C50/60	1 1	35.00		1	,30		
Splitting failure							
•				lf h	= h _{min}		
			2,5 · h _{ef}	2,0	· h _{ef}	1,5 · h _{ef}	
			All Control of the Co	If h _{min} <	h < 2 · h _{min}		
				1	1		
Education on		[mm]		2 x h _{min}			
Edge distance	C _{cr,Nsp}	fining		. 1			
				h _{min}	C _{O',Np} C _{O',Nsp}		
					ate values		
					2 · h _{min}		
				C	cr,Np		
Spacing	S _{cr,Nsp}	[mm]		2 ·	C _{cr,sp}		
Partial safety factor for combined			splitting faile				
	pan-out, concre	to oone and	opining rand				
Partial safety factors for in use				1	,50		
category 1 (γ_2 = 1,0 included)	$\gamma_{Mp} = \gamma_{Mc} = \gamma_{Msp}$ 2)	[-]			2000		
Partial safety factors for in use	V	-0.5		1	,80		
category 2 (γ_2 = 1,2 included)			1,00				

Characteristic resistance under tension loads in cracked concrete

Annex C2

Table C3: Characteristic values for shear loads - steel failure without lever arm

Size			M8	M10	M12	M16	M20	M24		
Steel failure with threaded rod grad	de 4.8		The Party							
Characteristic resistance	$V_{Rk,s}$	[kN]	7	12	17	31	49	71		
Partial safety factor 1)	Ϋ́Ms	[-]		1,25						
Steel failure with threaded rod grad	de 5.8		Te all and							
Characteristic resistance	$V_{Rk,s}$	[kN]	9	14	21	39	61	88		
Partial safety factor 1)	Ϋ́Ms	[-]			1	,25				
Steel failure with threaded rod grad	de 8.8			CHARLE O			A STATE OF THE STA			
Characteristic resistance	$V_{Rk,s}$	[kN]	15	23	34	63	98	141		
Partial safety factor 1)	ΥMs	[-]			1	,25				
Steel failure with threaded rod grad	de 10.9					GUE WINTE				
Characteristic resistance	$V_{Rk,s}$	[kN]	18	29	42	78	122	176		
Partial safety factor 1)	γMs	[-]			1	,50				
Steel failure with threaded rod grad	de 12.9									
Characteristic resistance	$V_{Rk,s}$	[kN]	22	35	51	94	147	212		
Partial safety factor 1)	γMs	[-]			1	,50				
Steel failure with stainless steel th	readed rod A4-70									
Characteristic resistance	$V_{Rk,s}$	[kN]	13	20	29	55	86	124		
Partial safety factor 1)	γMs	[-]			1	,56				
Steel failure with stainless steel th	readed rod A4-80									
Characteristic resistance	$V_{Rk,s}$	[kN]	15	23	34	63	98	141		
Partial safety factor 1)	γMs	[-]			1	,33				
Steel failure with high corrosion st	ainless steel grade 70									
Characteristic resistance	$V_{Rk,s}$	[kN]	13	20	29	55	86	124		
Partial safety factor 1)	γMs	[-]			1	,56				

Table C4: Characteristic values for shear loads - steel failure with lever arm

Size			M8	M10	M12	M16	M20	M24
Steel failure with threaded rod grad	le 4.8		3 1920			Ref Res		
Characteristic resistance	M ⁰ _{Rk.s}	[Nm]	15	30	52	133	260	449
Partial safety factor 1)	ΥMs	[-]			1,	25		
Steel failure with threaded rod grad	le 5.8	and the same of		BALLA T			Market Br	N. A. W.
Characteristic resistance	M ⁰ _{Rk.s}	[Nm]	19	37	65	166	324	561
Partial safety factor 1)	Ϋ́Ms	[-]			1,	25		
Steel failure with threaded rod grad						Series and the	25日月1日	2 1 Th
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	898
Partial safety factor 1)	ΥMs	[-]			1,	25		
Steel failure with threaded rod grad	le 10.9			ratio de la				
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	37	75	131	333	649	1123
Partial safety factor 1)	Ϋ́Ms	[-]			1,	50		
Steel failure with threaded rod grad	le 12.9		Manufil .					O. T. S.
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	45	90	157	400	779	1347
Partial safety factor 1)	YMs	[-]			1,	50		
Steel failure with stainless steel thr	eaded rod A4-70		The state of			Mary His		TE TO
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	26	52	92	233	454	786
Partial safety factor 1)	Ϋ́Ms	[-]			1	56		
Steel failure with stainless steel thr	eaded rod A4-80			300		A STATE OF THE		
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	898
Partial safety factor 1)	γMs	[-]			1,	,33		
Steel failure with high corrosion re-	sistant steel grade 70	and the same			dens o			THE REST
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	26	52	92	233	454	786
Partial safety factor 1)	Ϋ́Ms	[-]			1.	56		

¹⁾ In the absence of other national regulation

Characteristic resistance under shear loads in cracked and non-cracked concrete

Annex C3

Table C5: Characteristic values for shear loads - pry out and concrete edge failure

Size			M8	M10	M12	M16	M20	M24
	min	[mm]	60	70	80	100	120	145
Effective anchorage depth hef	max	[mm]	160	200	240	320	400	480
Pry out failure							S. Service	
Factor	k	[-]	2	2	2	2	2	2
Partial safety factor 1)	Υмр	[-]	1,5					
Concrete edge failure								
Partial safety factor 1)	γмс	[-]	1,5					

¹⁾ In the absence of other national regulation

Table C6: Displacement under tension loads

Size			M8	M10	M12	M16	M20	M24
Characteristic displacement in no	n-cracked concrete 0	220/25 to C5	50/60 un	der tens	ion load	s		
Admissible service load*	F	[kN]	9,6	10,8	14,3	23,8	29,6	42,4
COMPANY OF THE PARTY OF THE PAR	δ _{N0}	[mm]	0,30	0,30	0,35	0,35	0,35	0,40
Displacement	δ _{N∞}	[mm]	0,85	0,85	0,85	0,85	0,85	0,85

Size			M10	M12	M16	M20
Characteristic displacement in cr	acked concrete C20/2	5 to C50/60	under tensi	on loads		
Admissible service load*	F	[kN]	9,5	14,3	21,4	23,8
100 0	δ _{N0}	[mm]	0,50	0,50	0,70	0,60
Displacement	δ _{N∞}	[mm]	0,85	0,85	0,85	0,85

^{*} These values are suitable for each temperature range and categories specified in Annex B1

Table C7: Displacement under shear loads

Size			M8	M10	M12	M16	M20	M24
Characteristic displacement in cra	acked and non-cracke	ed concrete	C20/25	to C50/6	0 under	shear le	oads	
Admissible service load*	F	[kN]	3,7	5,8	8,4	15,7	24,5	35,3
Displacement	δνο	[mm]	2,0	2,0	2,0	2,0	2,0	2,0
	$\delta_{V\infty}$	[mm]	3,0	3,0	3,0	3,0	3,0	3,0

^{*} These values are suitable for each temperature range and categories specified in Annex B1

DGE02 Sinto ST-VE, DGE12 Sinto ST-VEW and DGE22 Sinto ST-VES

Characteristic resistance under shear loads.

Displacement under service loads: tension and shear loads

Annex C4